Computational Genomics, Medicine Genomics, System Biology

Sclust paper published on NP

After years fighting, our Sclsut paper published on Nature Protocols finally. Enjoy!

Copy-number analysis and inference of subclonal populations in cancer genomes using Sclust

  • Nature Protocols volume13pages1488–1501 (2018)
  • doi:10.1038/nprot.2018.033
Published: 24 May 2018


The genomes of cancer cells constantly change during pathogenesis. This evolutionary process can lead to the emergence of drug-resistant mutations in subclonal populations, which can hinder therapeutic intervention in patients. Data derived from massively parallel sequencing can be used to infer these subclonal populations using tumor-specific point mutations. The accurate determination of copy-number changes and tumor impurity is necessary to reliably infer subclonal populations by mutational clustering. This protocol describes how to use Sclust, a copy-number analysis method with a recently developed mutational clustering approach. In a series of simulations and comparisons with alternative methods, we have previously shown that Sclust accurately determines copy-number states and subclonal populations. Performance tests show that the method is computationally efficient, with copy-number analysis and mutational clustering taking <10 min. Sclust is designed such that even non-experts in computational biology or bioinformatics with basic knowledge of the Linux/Unix command-line syntax should be able to carry out analyses of subclonal populations.


Fill in your details below or click an icon to log in: 徽标

You are commenting using your account. Log Out /  更改 )

Google+ photo

You are commenting using your Google+ account. Log Out /  更改 )

Twitter picture

You are commenting using your Twitter account. Log Out /  更改 )

Facebook photo

You are commenting using your Facebook account. Log Out /  更改 )


Connecting to %s

%d 博主赞过: