Two new paper report in nature and The New England Journal of Medicine. This would be a good new for cancer patients. see the paper:
Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma
Nature Volume:467 ,Pages:596–599
B-RAF is the most frequently mutated protein kinase in human cancers1. The finding that oncogenic mutations in BRAF are common in melanoma2, followed by the demonstration that these tumours are dependent on the RAF/MEK/ERK pathway3, offered hope that inhibition of B-RAF kinase activity could benefit melanoma patients. Herein, we describe the structure-guided discovery of PLX4032 (RG7204), a potent inhibitor of oncogenic B-RAF kinase activity. Preclinical experiments demonstrated that PLX4032 selectively blocked the RAF/MEK/ERK pathway in BRAF mutant cells and caused regression of BRAF mutant xenografts4. Toxicology studies confirmed a wide safety margin consistent with the high degree of selectivity, enabling Phase 1 clinical trials using a crystalline formulation of PLX4032 (ref. 5). In a subset of melanoma patients, pathway inhibition was monitored in paired biopsy specimens collected before treatment initiation and following two weeks of treatment. This analysis revealed substantial inhibition of ERK phosphorylation, yet clinical evaluation did not show tumour regressions. At higher drug exposures afforded by a new amorphous drug formulation4, 5, greater than 80% inhibition of ERK phosphorylation in the tumours of patients correlated with clinical response. Indeed, the Phase 1 clinical data revealed a remarkably high 81% response rate in metastatic melanoma patients treated at an oral dose of 960 mg twice daily5. These data demonstrate that BRAF-mutant melanomas are highly dependent on B-RAF kinase activity.
Inhibition of Mutated, Activated BRAF in Metastatic Melanoma
n engl j med 363;9 nejm.org august 26, 2010
Background
The identification of somatic mutations in the gene encoding the serine–threonine protein kinase B-RAF (BRAF) in the majority of melanomas offers an opportunity to test oncogene-targeted therapy for this disease.
Methods
We conducted a multicenter, phase 1, dose-escalation trial of PLX4032 (also known as RG7204), an orally available inhibitor of mutated BRAF, followed by an extension phase involving the maximum dose that could be administered without adverse effects (the recommended phase 2 dose). Patients received PLX4032 twice daily until they had disease progression. Pharmacokinetic analysis and tumor-response assessments were conducted in all patients. In selected patients, tumor biopsy was performed before and during treatment to validate BRAF inhibition.
Results
A total of 55 patients (49 of whom had melanoma) were enrolled in the dose-escalation phase, and 32 additional patients with metastatic melanoma who had BRAF with the V600E mutation were enrolled in the extension phase. The recommended phase 2 dose was 960 mg twice daily, with increases in the dose limited by grade 2 or 3 rash, fatigue, and arthralgia. In the dose-escalation cohort, among the 16 patients with melanoma whose tumors carried the V600E BRAF mutation and who were receiving 240 mg or more of PLX4032 twice daily, 10 had a partial response and 1 had a complete response. Among the 32 patients in the extension cohort, 24 had a partial response and 2 had a complete response. The estimated median progression-free survival among all patients was more than 7 months.
Conclusions
Treatment of metastatic melanoma with PLX4032 in patients with tumors that carry the V600E BRAF mutation resulted in complete or partial tumor regression in the majority of patients. (Funded by Plexxikon and Roche Pharmaceuticals.)