培训课程内容: 深入讲解编程的基础思路和R语言的思想,并有R编程和数据处理的多上机实践和答疑!学习多个使用R语言分析的实例,包括基本的数据统计、基因芯片GEO数据分析以及TCGA数据下载和分析。


A new R package for network-based biomarker discovery released

A new R package, netClass, has been release. netClass integrate network information, such as protein-protein interaction network or KEGG, to mRNA classification, but also incorporate miRNA to mRNA with mi-mRNA interaction network for biomarker discovery. This methods we called stSVM and already published in PloS ONE (Cun et al 2013). Apart from stSVM, we also implement the flowing methods in netClass: 

  1. AEP (average gene expression of pathway), Guo et al., BMC Bioinformatics 2005, 6:58.
  2. PAC (pathway activitive classification), Lee E, et  al., PLoS Comput Biol 4(11): e1000217.
  3. hubc (Hub nodes classification), Taylor et al.(2009) Nat. Biotech.: doi: 10.1038/nbt.152
  4. frSVM (filter via top ranked genes), Cun et al. arXiv:1212.3214 ;  Winter etal., PLoS Comput Biol 8(5): e1002511.
  5. stSVM (network smoothed t-statistic) , Cun et al., PloS One,.

NetClass can be download from souceforg ( http://sourceforge.net/projects/netclassr/) or , CRAN (http://cran.r-project.org/web/packages/netClass/ ). For more detail of netClass, you can refer these four papers: